United States Patent

US009472161B1

(12) 10) Patent No.: US 9.472,161 B1
Ho et al. 45) Date of Patent: Oct. 18, 2016
(54) CUSTOMIZING VIRTUAL ASSETS 2006/0228020 Al* 10/2006 Sakaiccoovviviinnn 382/162
2007/0239521 Al 10/2007 Khadpe et al.
(75) Inventors: David Ho, Torrance, CA (US); Dennis %885;8}322% ﬁ} igggg gﬂ?;ggi? et al.
Suggs, Chino Hills, CA (US) 2009/0222348 Al 9/2009 Ransom et al.
2010/0177109 AL* 7/2010 Moore et al. oo 345/589
(73) Assignee: CIE Games LL.C, San Francisco, CA 2010/0318407 Al 12/2010 Leff et al.
(US) 2011/0010270 Al 1/2011 Hamilton, IT et al.
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 15 days. Wheelock, Asa M., and Alan R. Buckpitt. “Software-induced vari-
ance in two-dimensional gel electrophoresis image analysis.” Elec-
(21) Appl. No.: 13/308,399 trophoresis 26.23 (2005): 4508-4520.*
Paul Taylor, “Atomic Guide—Shading and Highlights”, Dec. 14,
(22) Filed: Nov. 30, 2011 2007, Copyright Tadpole Webworks, http://www.tadpolewebworks.
com/web/atomic/highlights html.*
Related U.S. Application Data Gimp, “2. Layer Modes”, Sep. 16, 2006, GIMP, http://docs.gimp.
org/en/gimp-concepts-layer-modes.html.*
(60) Provisional application No. 61/458,844, filed on Dec. (Continued)
1, 2010.
(51) Int.ClL Primary Examiner — Mark Zimmerman
G09G 5/02 (2006.01) Assistant Examiner — Sarah Le
GO6T 11/00 (2006.01) (74) Attorney, Agent, or Firm — Morgan, Lewis &
HO04N 1/60 (2006.01) Bockius LLP
(52) US. CL
CPC ..o, G09G 5/02 (2013.01); GO6T 11001 (57) ABSTRACT
(2013.01); GO9G 5/026 (2013.01); HO4N 1/60 Customizing virtual assets is disclosed, including: trans-
(2013.01); HO4N 1/6058 (2013.01) forming each of a plurality of initially identical copies of a
(58) Field of Classification Search virtual asset or a portion thereof to isolate a feature of the
CPC ... GO6T 11/001; GO6T 15/04; GO6T 19/02; virtual asset or portion thereof; and enabling the isolated
GOG6F 9/4443; GO9G 5/02; GO9G 5/06 feature to be changed by a user in at least one of the
USPC oo, 345/589, 581, 593 transformed copies, In some embodiments, customizing
See application file for complete search history. virtual assets includes: receiving a three-dimensional model
associated with the virtual asset; receiving an indication to
(56) References Cited save a two-dimensional virtual asset based on the 3D model

2006/0213975 Al

U.S. PATENT DOCUMENTS

7,106,343 B1*
7,558,433 B1*

9/2006 Hickman
7/2009 Georgiev
9/2006 Krishnan et al.

345/589
382/254

600
™

with a 2D image wrapped on it; and using the 3D model with
the 2D image wrapped on it to generate the 2D virtual asset.

23 Claims, 17 Drawing Sheets
(10 of 17 Drawing Sheet(s) Filed in Color)

Receive a selection associated with a color

|- 602

}

Apply the selected color to a base color layer
of an asset

|~ 604

i

Combine the base color layer after application
of the selected color with one or more other
layers associated with the asset

|- 606

US 9,472,161 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Corey, “Ambient Occlusion”, May 17, 2009, Original Artwork by
Corey © Copy right of Last of the Dragons Inc. 2009, http://www.
coreyloving.com/Gallery/Tutorials/ AmbientOcclusion.html.*

Sothink, “Version History of Sothink SWF Decompiler”, Jun. 16
2006, Sothink.com, http://www.sothink.com/product/
flashdecompiler/whatsnew.htm.*

Neil Vidyarthi, “Bing Advertises on Farmville, Acquires 400,000
Facebook Fans in One Day”, Mar. 4, 2010. http://www.allfacebook.
com/bing-advertises-on-farmville-acquires-400000-facebook-fans-

in-one-day-2010-03.

* cited by examiner

U.S. Patent Oct. 18, 2016 Sheet 1 of 17 US 9,472,161 B1

Network 104

Asset customization L7 106
server

FIG. 1

U.S. Patent Oct. 18, 2016 Sheet 2 of 17 US 9,472,161 B1

Start

Duplicate an asset into a plurality of copies

l

Transform each of at least one of the plurality
of copies into a layer that isolates one or more
different features of the asset

End

FIG. 2

U.S. Patent Oct. 18, 2016 Sheet 3 of 17 US 9,472,161 B1

FIG. 3

U.S. Patent Oct. 18, 2016 Sheet 4 of 17 US 9,472,161 B1

406

FIG. 4

404

402

U.S. Patent Oct. 18, 2016 Sheet 5 of 17 US 9,472,161 B1

506

FIG. 5

502

U.S. Patent Oct. 18, 2016 Sheet 6 of 17 US 9,472,161 B1

Start

Receive a selection associated with a color |~ 602

'

Apply the selected color to a base color layer |~ 604
of an asset

l

Combine the base color layer after application
of the selected color with one or more other
layers associated with the asset

End

FIG. 6

U.S. Patent Oct. 18, 2016 Sheet 7 of 17 US 9,472,161 B1

706

704
FIG. 7

702

U.S. Patent Oct. 18, 2016 Sheet 8 of 17 US 9,472,161 B1

802
FIG. 8

U.S. Patent

Oct. 18, 2016 Sheet 9 of 17

Start

US 9,472,161 B1

Receive a 3D model associated with an asset

|~ 902

l

Receive a 2D image

l

Render, dynamically, the 3D model with the
2D image wrapped on

End

FIG. 9

U.S. Patent Oct. 18, 2016 Sheet 10 of 17 US 9,472,161 B1

FIG. 10

1000

US 9,472,161 B1

Sheet 11 of 17

Oct. 18, 2016

U.S. Patent

el L
(] \ — B
oLy [
»f{f«! ixsxn
U —

U.S. Patent Oct. 18, 2016 Sheet 12 of 17 US 9,472,161 B1

1200
Start
1202
Change? <
Yes
+ 1204
No Dynamically update the rendering of the 3D No

model with the 2D image wrapped around it
based at least in part on the detected change

1206

Stop 3D model?

Yes

End

FIG. 12

U.S. Patent Oct. 18, 2016 Sheet 13 of 17 US 9,472,161 B1

FIG. 13

U.S. Patent Oct. 18, 2016 Sheet 14 of 17 US 9,472,161 B1

FIG. 14

U.S. Patent Oct. 18, 2016 Sheet 15 of 17 US 9,472,161 B1

Start

Receive an indication to generate one or more
2D graphic design images based at leastin |~ 1502
part on a wrapping of the 2D image over the

3D model

l

Generate one or more 2D graphic design
images, each 2D graphic design image is
associated with a different perspective of the |
3D model, based at least in part on the
wrapping of the 2D image over the 3D model

|~ 1504

End

FIG. 15

U.S. Patent Oct. 18, 2016 Sheet 16 of 17 US 9,472,161 B1

FIG. 16B

FIG. 16A

U.S. Patent Oct. 18, 2016 Sheet 17 of 17 US 9,472,161 B1

FIG. 17

US 9,472,161 Bl

1
CUSTOMIZING VIRTUAL ASSETS

CROSS REFERENCE TO OTHER
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application No. 61/458,844 entitled COLORIZING VIR-
TUAL GOODS IN FLASH CLIENT filed Dec. 1, 2010
which is incorporated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

Interactive computer gaming is an expanding industry.
With the increasing prevalence of networked devices and
social media, online interactive gaming has also become
convenient and popular. In the realm of online gaming, users
can interact with one another via virtual identities and also
virtual assets. As users spend more time engaging with
virtual assets, it would be desirable to allow users to
customize virtual assets to suit their interests and aesthetic
tastes, for example.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1 is a diagram showing an embodiment of a system
for performing asset customization.

FIG. 2 is a flow diagram showing an embodiment of a
process for customizing the color of an asset.

FIG. 3 is an example of an asset.

FIG. 4 is an example of three copies of virtual car asset
300.

FIG. 5 is a diagram showing an example of three copies
of virtual car asset 300, each transformed into a particular
layer.

FIG. 6 is a flow diagram showing an embodiment of a
process for customizing a base color of an asset.

FIG. 7 is a diagram showing an example of a base color
layer filled in with three different possible colors.

FIG. 8 is a diagram showing an example of a final virtual
car asset including the base color, shading, and highlight
layers combined with other layers.

FIG. 9 is a flow diagram showing an embodiment of a
process for customizing a graphic design for an asset.

FIG. 10 is a diagram showing an example of a 3D model
of an asset.

FIG. 11 is a diagram showing an example of a template of
a 3D model of an asset.

FIG. 12 is a flow diagram showing an example of updat-
ing the wrapping of a 2D image over the 3D model.

FIG. 13 is a diagram showing an example of a 3D model
rendered with the 2D image wrapped over it.

FIG. 14 is a diagram showing another example of a 3D
model rendered with the 2D image wrapped over it.

FIG. 15 is a flow diagram showing an embodiment of a
process for generating one or more 2D images from wrap-
ping the texture map onto a 3D model.

FIG. 16A is a diagram showing an example of a template
filled in with a user-chosen 2D image.

FIG. 16B is a diagram showing an example of the 2D
image generated by wrapping the user-chosen 2D image

10

15

20

25

30

35

40

45

50

55

60

65

2

onto the invisible 3D model and rotating and orienting the
3D model to match one perspective of the 2D virtual car
asset.

FIG. 17 shows an example of a final virtual car asset with
a customized graphic design layer applied to it.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composi-
tion of matter; a computer program product embodied on a
computer readable storage medium; and/or a processor, such
as a processor configured to execute instructions stored on
and/or provided by a memory coupled to the processor. In
this specification, these implementations, or any other form
that the invention may take, may be referred to as tech-
niques. In general, the order of the steps of disclosed
processes may be altered within the scope of the invention.
Unless stated otherwise, a component such as a processor or
a memory described as being configured to perform a task
may be implemented as a general component that is tem-
porarily configured to perform the task at a given time or a
specific component that is manufactured to perform the task.
As used herein, the term ‘processor’ refers to one or more
devices, circuits, and/or processing cores configured to
process data, such as computer program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying fig-
ures that illustrate the principles of the invention. The
invention is described in connection with such embodi-
ments, but the invention is not limited to any embodiment.
The scope of the invention is limited only by the claims and
the invention encompasses numerous alternatives, modifi-
cations and equivalents. Numerous specific details are set
forth in the following description in order to provide a
thorough understanding of the invention. These details are
provided for the purpose of example and the invention may
be practiced according to the claims without some or all of
these specific details. For the purpose of clarity, technical
material that is known in the technical fields related to the
invention has not been described in detail so that the
invention is not unnecessarily obscured.

Customizing a virtual asset is disclosed. In some embodi-
ments, the color associated with a virtual asset can be
customized by allowing a user to select a base color asso-
ciated with the asset. In some embodiments, a graphic
design can be applied to an asset by first wrapping a
two-dimensional, user-chosen image over a three-dimen-
sional model of the asset. In some embodiments, one or
more two-dimensional images associated with the asset are
then generated from the model wrapped with the user-
chosen image.

FIG. 1 is a diagram showing an embodiment of a system
for performing asset customization. In the example, system
100 includes device 102, network 104, and asset customi-
zation server 106. Network 104 includes high-speed data
and/or telecommunications networks.

Device 102 is configured to access asset customization
server 106 via network 104. For example, device 102 can be
a laptop computer, a desktop computer, a tablet device, a
smart phone, a mobile device, or any other computing
device. In various embodiments, a web browser and/or
software application and/or environment is installed at
device 102 to enable device 102 to engage in an interactive
online game hosted by asset customization server 106. For
example, a Flash Client can be installed at device 102. For
example, a user can use device 102 to access the game via

US 9,472,161 Bl

3

a web browser by accessing the appropriate uniform
resource locator (URL) and/or performing authentication
(e.g., associated with an account that the user has with the
game). In some embodiments, a user who wishes to access
the game needs to first access a third-party application/
website (e.g., Facebook®) prior to logging into the game. In
some embodiments, device 102 includes an application
and/or logic to communicate with asset customization server
106 to send and/or receive data files associated with the
game hosted by asset customization server 106. In some
embodiments, data files related to the game hosted by asset
customization server 106 can be stored on one or both of
device 102 or asset customization server 106.

In some embodiments, asset customization server 106 is
configured to host a game over network 104 and also to
communicate with device 102. Asset customization server
106 sends data and/or logic to device 102 to enable a user at
device 102 to customize a color associated with an asset.
Asset customization server 106 sends data associated with
an asset to device 102. Device 102 transforms the asset into
multiple copies and processes each copy independently to
isolate a particular feature associated with the original asset
in an image layer. In some embodiments, at least one of the
copies is processed to include a solid color, which can be
changed to any one color that is available. Then, the layers
are combined to form an asset with, for example, a base
color different than the color of the original asset.

In some embodiments, asset customization server 106 is
configured to send data and/or logic to device 102 to enable
a user at device 102 to customize an asset by applying a 2D
graphic design to it. The asset is represented in game play by
one or more 2D images (as such, herein, the asset is
sometimes referred to as a 2D asset), where each 2D image
of the asset shows a different angle/perspective of the 3D
asset. However, each 2D image of the asset is rendered to
give a 3D-like appearance (e.g., the image includes the
appearance of highlights and shadows that show depth and
dimension) of the asset at that particular angle/perspective.
To generate a 3D-appearing 2D image of the asset with the
desired graphic design applied to it, in some embodiments,
a 3D model of the asset is used to model the 3D appearance
of the asset with the desired graphic design wrapped around
it.

Colorizing Virtual Assets

FIG. 2 is a flow diagram showing an embodiment of a
process for customizing the color of an asset. In some
embodiments, process 200 is implemented at system 100.
For example, process 200 can be implemented at device 102
of system 100.

At 202, an asset is duplicated into a plurality of copies.
For example, an asset can be an Adobe Flash SWF file that
comprises one or more layers of bitmap data. In some
embodiments, the virtual asset is used, played with, or
otherwise animated in a virtual gaming environment. The
asset may be created based on an original artwork created by
a digital artist using authoring software or some other tool.
At least one of the layers of bitmap data is marked for
coloring (the colorable layer). For example, in the SWF file
of the asset, the colorable layer includes shading, highlight,
and base color information. In some embodiments, the layer
that is marked for coloring is initially colored a neutral red
color. The asset is sent from a server, such as asset customi-
zation server 106, to the client (e.g., device 102) and if
appropriate, the asset is loaded in an associated environ-
ment. For example, the server can send an asset that is an
SWF file to the client device and then the SWF file can be
loaded into a Flash Client installed at the client device. The

10

15

20

25

30

35

40

45

50

55

60

65

4

asset (or the colorable layer thereof) is duplicated (e.g.,
using the Flash API) to generate multiple layers that are
initially identical to one another.

At 204, each of at least one of the plurality of copies is
transformed into a layer that isolates one or more different
features of the asset. For example, a virtual car may be
duplicated to generate three copies; the first copy can be
associated with a base color of the car, the second copy can
be associated with shading of the car, and the third copy can
be associated with highlights of the car. For example, each
copy can be processed differently from the other copies
using a known image processing technique. For example,
each duplicate of the colorable layer of the SWF file of the
asset can be processed to isolate one of the shading, high-
light, and base color features of the asset. In some embodi-
ments, the color associated with the base color layer can be
changed, as discussed further below.

FIG. 3 is an example of an asset. In this example, the
virtual asset 300 comprises a body portion of a virtual car.
In some embodiments, data (e.g., a SWF file) that represents
a virtual car asset such as virtual car asset 300 is transmitted
from a server such as asset customization server 106 to a
client device such as device 102. While virtual car asset 300
is a SWF file as discussed in this example, virtual car asset
300 can be represented by other file types as well.

In some embodiments, virtual car asset 300 is a 2D virtual
good asset that is rendered to appear 3D. In some embodi-
ments, the 2D image shown in FIG. 3 is one of many
possible angles/perspectives of the virtual car asset 300 and
each angle/perspective can be represented by a different 2D
image. Although, for illustrative purposes, only the angle/
perspective of virtual good asset 300 as seen in FIG. 3 is
used in subsequent examples.

FIG. 4 is an example of three copies of virtual car asset
300. In the example, virtual car asset 300 was duplicated into
three identical copies, 402, 404, and 406. In the example of
virtual car asset 300 being represented by a SWF file, only
the colorable layer of the SWF file (as opposed to the entire
SWF file) is duplicated into copies 402, 404, and 406. While
virtual car asset 300 is duplicated into three copies in the
example, virtual car asset 300 can be duplicated into more
or fewer copies. In some embodiments, virtual car asset 300
can be represented by a file type other than a SWF file and
can be duplicated in any manner appropriate. In some
embodiments, virtual car asset 300 can be duplicated into
one or more copies at the client device. As will be discussed
below, each copy will be transformed to isolate a particular
feature of the visual appearance of virtual car asset 300.

FIG. 5 is a diagram showing an example of three copies
of virtual car asset 300, each transformed into a particular
layer. In some embodiments, each duplicated copy of virtual
car asset 300 (e.g., 402, 404, and 406 of FIG. 4) is trans-
formed into a layer of image data that isolates a particular
feature of the visual appearance of virtual car asset 300. For
example, if virtual car asset 300 were represented by a SWF
file, then the SWF file could be loaded into the Flash Client
at the client device and, using the Flash application pro-
gramming interface (API), each duplicated colorable layer
copy is transformed using client-side bitmap processing. In
the example of FIG. 5, a first duplicated copy is transformed
into base color layer 502, a second duplicated copy is
transformed into shading layer 504, and a third duplicated
copy is transformed into highlight layer 506.

In some embodiments, base color layer 502 is filled in
solid with a desired color. Alternatively, the same result can
be achieved by first creating a bitmap completely filled with
the desired color (i.e., a solid rectangle), then duplicating the

US 9,472,161 Bl

5

alpha channel from the source bitmap. In various embodi-
ments, the desired color used to fill base color layer 502 is
selected by a user. In some embodiments, shading layer 504
is processed into a multiply layer consisting of only the dark
portions of the original asset. This is done in some embodi-
ments by adjusting the hue of the red component to maxi-
mum lightness (e.g., via Flash’s ColorMatrixFilter), then
changing the layer mode to “multiply.” In some embodi-
ments, highlight layer 506 is processed into a screen layer
consisting of only the light portions of the original asset.
This is done in some embodiments by adjusting the hue of
the red component to minimum lightness (e.g., via Flash’s
ColorMatrixFilter), then changing the layer mode to
“screen.”

FIG. 6 is a flow diagram showing an embodiment of a
process for customizing a base color of an asset. In some
embodiments, process 600 can be implemented at system
100.

At 602, a selection associated with a color is received. In
some embodiments, the color of the base color layer such as
base color layer 502 of an asset can be selected to be one that
is desired by a user. In some embodiments, the desired color
can be selected by a user at a user interface. For example, the
user interface can be associated with an interactive (e.g.,
online) game hosted by a server such as asset customization
server 106. Also, for example, the user interface can be
available at a particular URL over a web browser. The user
interface can, for example, be a color palette and/or lightness
to darkness scale.

At 604, the selected color is applied to a base color layer
of an asset. In some embodiments, the base color layer is
filled in solid with the color selected at 602.

At 606, the base color layer after application of the
selected color is combined with one or more other layers
associated with the asset. In some embodiments, the base
color layer now filled with the selected color is combined
with other layers associated with the asset. In some embodi-
ments, the base color layer is combined with other layers in
a stack of layers. For example, returning to the example of
FIG. 5, once base color layer 502 is filled with the selected
color, it is stacked with shading layer 504 and highlight layer
506. For example, the layers can be stacked from bottom up
in the following order: base color layer, shading layer, and
highlight layer. In another example, the layers can be
stacked from bottom up in the following order: base color
layer, highlight layer, and shading layer. The combined
effect is intended to recreate the original asset, but with the
flexibility of setting the base color as any color desired by a
user. For example, the processed and combined layers of
virtual car asset 300 can resemble original virtual car asset
300 again, only with the base color changed to the color
selected by a user.

FIG. 7 is a diagram showing an example of a base color
layer filled in with three different possible colors. As men-
tioned above, a user can select to fill in a base color layer
such as base color layer 502 of an asset with a desired color.
The example of FIG. 7 shows that a color desired by a user
can be filled in solid in the base layer. In the example, each
0t'702, 704, and 706 is a different possible color with which
a user may select to fill in the base color layer.

FIG. 8 is a diagram showing an example of a final virtual
car asset including the base color, shading, and highlight
layers combined with other layers. In some embodiments,
other layers are stacked above and below the base color,
shading, and highlight layers. In the example, virtual car
asset 802 represents the stacking of the base color, shading,

15

20

25

30

40

45

55

6

and highlight layers, in addition to uncolored layers that
represent the windows, wheels, rims, grille, and head/tail
lights of the virtual car asset.

Customizing a Graphic Design for an Asset Using a 3D
Model

Returning to FIG. 1, in some embodiments, asset cus-
tomization server 106 sends data associated with a three-
dimensional (3D) model (modeled after an asset created, for
example, using a 3D authoring tool) to be run at device 102,
associated code, and/or logic for interaction with a third
party (e.g., 3D engine service). Then at device 102, a user
can choose and/or generate a two-dimensional (2D) image to
be wrapped on the 3D model. For example, the image can be
chosen from a provided selection, or from the user’s per-
sonal collection of images, which for example can be
selected from the user’s image or photo library and uploaded
or emailed to asset customization server 106. In some
embodiments, a user interface is provided to enable the user
to change the placement of the selected 2D image as
wrapped over the 3D model. For example, a 2D template
associated with the 3D model, such as a 2D projection of
elements comprising the 3D model, is displayed in some
embodiments, and the user interface enables the user to
position the 2D image as desired over the template, resulting
in the 2D image being wrapped on the 3D model based on
the user’s placement of the image relative to the template. A
third-party 3D engine is used in some embodiments to
dynamically render a wrap of the chosen 2D image around
the appropriate surfaces of the 3D model. The dynamically
rendered wrapping over the 3D model can be displayed. In
response to a certain condition being met (e.g., the perfor-
mance of a specific user selection with respect to the user
interface), the placement of the selected 2D image over the
3D model is frozen and one or more 2D images (e.g., each
associated with a different angle of the 3D model) of the
chosen image wrapped over the 3D model are generated.
The generated 2D images are stored (e.g., at either or both
of device 102 and asset customization server 106) and an
appropriate generated 2D image associated with a particular
angle/perspective of the asset can be displayed for the 2D
asset at instances of the game play that are associated with
that particular angle/perspective. In some embodiments,
generating and storing the 2D assets enables the game to be
played with the visual sense of a 3D asset being used in the
game environment without requiring that the 3D model be
retained on the user device and/or run during game play
time. In some alternative embodiments, the 3D model with
the user-chosen image wrapped over it is rendered and
stored as a 3D model that incorporates the image as mapped
to appropriate locations of its surface, and this generated 3D
model is used in game play.

FIG. 9 is a flow diagram showing an embodiment of a
process for customizing a graphic design for an asset. In
some embodiments, process 900 is implemented at system
100.

At 902, a 3D model associated with an asset is received.
In some embodiments, the 3D model is associated with the
body of a virtual car asset such as virtual car asset 300 of
FIG. 3. In some embodiments, the virtual car asset associ-
ated with the 3D model is first created using a 3D digital
content creation tool. Then, the content creation tool or
another tool is used to generate the 3D model based on the
original 3D digital artwork.

In some embodiments, the 3D model is sent from a server
such as asset customization server 106 to a client device
such as device 102. In some embodiments, the 3D model is
a lightweight model with a relatively low polygon count,

US 9,472,161 Bl

7

which can enable faster processing at the client device (as
opposed to a model with a higher polygon count). For
example, a 3D model (e.g., in Collada format) associated
with the asset is received at the client device and imported
into the Flash Client. In some embodiments, subsequent to
receiving the 3D model, the 3D model is actively run by a
third-party 3D engine (e.g., Away3D) at the client.

In some embodiments, an online interactive game hosted
by the server is currently being accessed at the client device
(e.g., via web browser) and the 3D model is sent to the client
in association with the game. For example, the 3D model can
be sent from the server to the client subsequent to a
user-based selection to create a texture map for a virtual car
asset in the game. Applications and/or programming code
associated with the game can enable the 3D model to be
loaded into the appropriate environment (e.g., Flash Client)
and/or be supported by the appropriate rendering engine
(e.g., Away3D), such that the user at the client does not need
to download any additional software to run the 3D model.

At 904, a 2D image is received. In various embodiments,
the 2D image is the basis for the graphic design a user
desires to apply to the asset. The 2D image may be gener-
ated, uploaded, and/or selected by the user and/or generated
using a drawing tool. For example, the drawing tool can be
built into a user interface associated with the game. In
various embodiments, the 2D image may be uploaded (e.g.,
from Clip Art or from a local or remote drive), selected from
among one or more available images (e.g., the images can be
available at the user interface associated with the game),
and/or further edited (e.g., enlarged, cropped, shrunk). The
2D image that is selected/generated/uploaded by the user is
sometimes referred to herein as a “user-chosen 2D image.”

At 906, the 3D model with the 2D image wrapped on it
is rendered dynamically. In some embodiments, the 2D
image can be treated as a UV texture map and wrapped to
the 3D model. The “U” and “V” of a UV texture map
describe the two dimensions of the 2D image (because “X,”
“Y,” and “Z” are already used to describe the 3D model in
space). A UV texture map allows polygons of a 3D model to
be painted with patterns/colors from a 2D image. UV
mapping includes mapping portions of the 2D image to the
appropriate areas on the surface of the 3D model.

In some embodiments, the 2D image is positioned over
various surface areas of the 3D model and the appearance of
the 3D model wrapped with the 2D image is dynamically
rendered and displayed for each placement of the 2D image.
In some embodiments, the 2D image is positioned over a
template associated with the surface area of the 3D model
and a user can move the placement of the 2D image over the
template (e.g., via a user interface) to customize a desired
overlay/design/wrapping of the 2D image over the 3D
model. For example, using a 3D engine and/or tool, the
Flash Client renders the invisible 3D model with the texture
wrapped to the model so that only the texture and/or other
visual data (e.g., layers such as the base color, shading, and
highlight) associated with the appropriate angle/perspective
of the 3D model is displayed at the client device. In some
embodiments, one or more 2D images can be generated
based on various angles/perspectives of the 3D model with
texture wrapped around them. As discussed further below,
each of these generated 2D images (sometimes referred to as
2D graphic design images) can be used as a graphic design
layer to be stacked with one or more of the base color,
shading, and highlight layers to show an asset with the
customized graphic design applied to it.

FIG. 10 is a diagram showing an example of a 3D model
of an asset. The example shows a 3D model of the body of

25

30

40

45

65

8

virtual car asset 300 of FIG. 3. As shown in the example, the
outer skin/surface of 3D model 1000 comprises a plurality of
polygon shapes arranged in three-dimensional space. In
some embodiments, a 2D image chosen by a user can be
mapped to a 3D model by assigning pixels in the 2D image
to coordinates of the polygons of the 3D model. For
example, this mapping can be achieved by programmatically
copying a piece of the 2D image and pasting it onto a
corresponding area of the surface of the 3D model.

FIG. 11 is a diagram showing an example of a template of
a 3D model of an asset. In some embodiments, a template,
such as template 1100 is optionally used for customizing a
graphic design to be applied to an asset. In the example,
template 1100 is associated with 3D model 1000. In the
example, dashed box 1102 represents the outline of a 2D
image that is chosen by a user. Template 1100 can appear at
a user interface where a user can then drag the 2D image
over the template at various locations/placements/positions
of the template. Then, the portions of the 2D image that are
located within the outlines of template 1100 are dynamically
wrapped around 3D model 1000 at the corresponding areas
on its surface and in some embodiments, displayed to the
user at the client device. For example, as a user changes/
drags the placement of the 2D image over template 1100, the
wrapping of the 2D image over the 3D model is dynamically
updated (and displayed) based on each changed placement
of the 2D image over template 1100. In some embodiments,
a temporary layer is generated using a placement of the 2D
image wrapped over the 3D model and stacked together with
other layers (e.g., over the base color layer but under the
highlight and shading layers) such that the stacked layers are
displayed to represent each changed placement of the 2D
image over the 3D model. The portions of the 2D image that
are not located within the outlines of template 1100 are
ignored (e.g., not wrapped around the 3D model).

FIG. 12 is a flow diagram showing an example of updat-
ing the wrapping of a 2D image over the 3D model. In some
embodiments, process 1200 is implemented at system 100.
In some embodiments, process 1200 is used to implement
906 of process 900.

At 1202, it is determined whether the wrapping of the 2D
image over the 3D model has changed. In some embodi-
ments, when the 2D image changes in shape, size, orienta-
tion, and/or position of placement over a template (if a
template such as template 1100 is used) from a previous
position, then a change in the wrapping of the 2D image over
the 3D model is detected. If such a change is detected,
control then passes to 1204. Otherwise, control passes to
1206.

At 1204, the rendering of the 3D model with the 2D image
wrapped around it is dynamically updated based at least in
part on the detected change. In some embodiments, each
change detected at 1202 entails remapping/rewrapping the
2D image (that is laid over the template) to the surface of the
3D model, based on, for example, the new shape, size,
and/or position over the template of the 2D image. In some
embodiments, subsequent to updating the rendering of the
3D model, the updated 3D model is displayed at the user
interface with the changed 2D image wrapped around it.

At 1206, it is determined whether the 3D model is to be
stopped. In some embodiments, process 1200 is repeated
continuously from 1202 until a condition is met, in which
the 3D model is prevented from running at the client device.
For example, the condition can be that the system is shut
down or that a particular user selection that is designated to

US 9,472,161 Bl

9

stop the 3D model from running (e.g., the user selection can
be associated with saving the customized asset) has been
performed.

FIG. 13 is a diagram showing an example of a 3D model
rendered with the 2D image wrapped over it. The example
of FIG. 13 can appear in a user interface that is used for
customizing a texture associated with virtual car asset 300.
In the example, flame image 1300 (a 2D image that is
uploaded by a user) is laid over a portion of template 1100.
Rendered 3D model wrapped with a 2D image 1302 is a 3D
model that is dynamically updated to show the wrapping of
the 2D image based on the current position of flame image
1300 over template 1100, as shown in FIG. 13. In the
example, rendered 3D model wrapped with a 2D image 1302
appears as one angle/perspective (of one or more possible
angles/perspectives) at which virtual car asset 300 can be
seen (e.g., in game play). Rendered 3D model wrapped with
a 2D image 1302 includes the texture of flame image 1300
mapped to the 3D model, as well as several stacked layers
of image data (e.g., base color layer and shading layer,
associated with virtual car asset 300 at that particular
angle/perspective). Because template 1100 is associated
with only the body of virtual car asset 300, portions of flame
image 1300 are not mapped to the non-body regions of
virtual car asset 300, such as the windows, wheels, rims,
grille, lights, etc. Rendered 3D model wrapped with a 2D
image 1302 can help a user who wishes to add a graphic
design to the virtual car asset to determine what the 3D
rendering of a certain position/orientation/appearance of the
2D image will look like once applied/mapped to the 3D
model that represents the virtual car asset. The portions of
flame image 1300 that are included within the outlines of
template 1100 that are wrapped on the rendered 3D model
appear in darker colors. The portions of flame image 1300
not included within the outlines of template 1100 and thus
are not wrapped on the rendered 3D model appear in lighter
colors. In some embodiments, flame image 1300 can also be
edited (e.g., enlarged, shrunk, cropped, stretched, rotated,
flipped, etc.) by a user at the user interface and such a change
can be dynamically updated in the rendered 3D model. As
shown in the next figure, flame image 1300 can be dragged
(e.g., by a user’s selection at the user interface) over a
different region of template 1100 to create a different wrap-
ping over the 3D model, and such change can be dynami-
cally updated in the rendered 3D model.

FIG. 14 is a diagram showing another example of a 3D
model rendered with the 2D image wrapped over it. In the
example of FIG. 14, the placement of flame image 1300 has
been moved (e.g., by a user at a user interface) from its
previous position in FIG. 13 to the current position over
template 1100, as shown in FIG. 14. This change in the
position of flame image 1300 over template 1100 can be
detected using a process such as process 1200 and in
response to detection of such a change, the mapping of flame
image 1300 is dynamically updated on rendered 3D model
wrapped with a 2D image 1302. In the example of FIG. 14,
the rendered 3D model wrapped with a 2D image 1302 has
now been updated with the current position of flame image
1300 over template 1100, as shown in FIG. 14.

FIG. 15 is a flow diagram showing an embodiment of a
process for generating one or more 2D images from wrap-
ping the texture map onto a 3D model. In some embodi-
ments, process 1500 is implemented at system 100.

At 1502, an indication to generate one or more 2D graphic
design images based at least in part on a wrapping of the 2D
image over the 3D is received. In some embodiments, such
an indication is associated with a performance of a specially-

10

15

20

25

30

35

40

45

50

55

60

65

10

designated user selection at the user interface. For example,
the user selection can be a user clicking “Buy” with respect
to the customized wrapping of the user-chosen 2D image
over the virtual car asset (which also indicates the comple-
tion of the customization process). In some embodiments,
this same designated user selection is also used to cue
stopping the 3D model at the client device of 1206 of
process 1200.

At 1504, one or more 2D graphic design images based at
least in part on the wrapping of the 2D image over the 3D
model is generated, each 2D graphic design image being
associated with a different perspective of the 3D model. For
example, once the indication is received, the wrapping of the
user-chosen 2D image over the invisible 3D model can no
longer be further updated and the most recently updated
wrapping of the user-chosen 2D image over the 3D model is
used to generate the one or more 2D graphic design images.
In some embodiments, the 3D model with the final wrapping
of'the user-chosen 2D image is rotated and oriented to match
one or more predetermined angles/perspectives of the 2D
asset and a 2D graphic design image is generated for each
angle/perspective of the 2D asset. For example, the Flash
Client can iterate through all predetermined angles/perspec-
tives associated with the asset (e.g., used in the game in
which the asset is to be used), and generate a 2D bitmap for
each of those angles/perspectives and save them (e.g., to the
clients and/or server). In some embodiments, six angles/
perspectives are used and so six 2D graphic design images
are generated. In some embodiments, each generated 2D
graphic design image is used as a graphic design layer that
can be inserted over the base color layer and under the
shading and highlight layers to create the appearance that the
customized graphic design is applied to the asset (all other
layers used in the combination are associated with the same
angle/perspective as the graphic design layer). In some
embodiments, once the one or more 2D graphic design
images are generated, the 3D model is prevented from
running at the client device.

In various embodiments, once 2D graphic design images
are generated and stored, each time a user views that
customized virtual asset (e.g., associated with playing the
interactive game), the saved graphic design associated with
the appropriate angle/perspective is loaded in and used (e.g.,
rather than loading in the 3D model and re-wrapping the
user-chosen 2D image to it). In various embodiments, 2D
graphic design images are stored and used locally, in addi-
tion to and/or instead of saving them to a server. During
game play (or other interaction, in the case of virtual
environments other than games), an appropriate one of the
previously generated 2D graphic design images is used to
display the asset in the context of the virtual game environ-
ment. For example, in some embodiments, game application
code includes code and/or values used during game play to
select one of the available views of the asset to be displayed
based on such factors as the state of game play, a location of
the asset within the game or other virtual environment, a
direction or other input received from the user, the location
and attributes of adjacent virtual assets and/or elements of
the virtual environment, etc. In this way, the appearance and
sense of using a 3D asset to interact with a 3D virtual
environment is provided to the user using computationally
and bandwidth efficient 2D images each showing the asset as
viewed from an associated angle/perspective.

FIG. 16A is a diagram showing an example of a template
filled in with a user-chosen 2D image. In the example, a
template such as template 1100 has been filled in, within its
outlines, with a 2D image of swirl patterns that was chosen

US 9,472,161 Bl

11

by a user. In some embodiments, once a condition to trigger
the stopping of the 3D model is met (e.g., 1206 of process
1200), the template is filled in, within its outlines, with the
design of the 2D image based on the last position the
user-chosen 2D image was laid over the template. The image
data of the filled in template FIG. 16A is then wrapped over
the appropriate surface areas of the 3D model.

FIG. 16B is a diagram showing an example of the 2D
image generated by wrapping the user-chosen 2D image
onto the invisible 3D model and rotating and orienting the
3D model to match one perspective of the 2D virtual car
asset. The 2D graphic design image of the example can be
used as a graphic design layer and inserted above the base
color layer and below the shading and highlight layers,
where the base color, shading, and highlight layers are each
associated with the same angle/perspective of the virtual car
asset that is associated with the graphic design image.

FIG. 17 shows an example of a final virtual car asset with
a customized graphic design layer applied to it. The example
shows an angle/perspective of virtual car asset 300 with the
application of the graphic design layer of FIG. 16B inserted
above the base color layer and below the shading and
highlight layers, in addition to other layers associated with
windows, wheels, rims, grille, and head/tail lights of the
asset.

Although the foregoing embodiments have been
described in some detail for purposes of clarity of under-
standing, the invention is not limited to the details provided.
There are many alternative ways of implementing the inven-
tion. The disclosed embodiments are illustrative and not
restrictive.

What is claimed is:

1. A method of customizing a virtual asset, comprising:

at a computer system comprising a memory and a pro-
cessor:

receiving a virtual asset that includes a first color layer,
wherein the first color layer is set to an initial color
value;

enabling the initial color value of the first color layer to be
changed by a user to a final color value, wherein the
final color value is different than the initial color value;

duplicating the first color layer into a plurality of color
layers that are identical to the first color layer, wherein
the plurality of color layers includes a shading layer
and a highlighting layer and wherein the shading layer
and the highlighting layer are set to the final color
value,

processing the shading layer, wherein the processing
comprises adjusting, without human intervention,
responsive to the duplication, and independent of color
values in the plurality of color layers other than the
shading layer, a hue of a red component of the final
color value to a maximum lightness in the shading
layer;

processing the highlighting layer, wherein the processing
comprises adjusting, without human intervention,
responsive to the duplication, and independent of color
values in the plurality of color layers other than the
highlighting layer, a hue of a red component of the final
color value to a minimum lightness in the highlighting
layer; and

stacking the plurality of layers on top of the first color
layer, wherein the stacking comprises multiplying cor-
responding portions of the shading layer and the first
color layer against each other, thereby customizing the
virtual asset.

10

15

20

25

30

35

40

45

50

55

60

65

12

2. The method of claim 1, wherein the final color value
represents a solid color.

3. The method of claim 1, wherein the virtual asset
comprises a SWF file and the first color layer and the
plurality of layers are respective layers within the SWF file.

4. The method of claim 1, wherein the virtual asset is
received at a client device.

5. The method of claim 1, wherein the virtual asset is
two-dimensional and is rendered to appear three-dimen-
sional by copying portions of a two-dimensional model onto
a plurality of polygons on a surface of a three-dimensional
model.

6. The method of claim 1, wherein the first color layer is
bitmap data marked for coloring by including shading,
highlight, and base color information.

7. The method of claim 1, wherein the stacking results in
the highlight layer being stacked on top of the shading layer,
and the shading layer being stacked on top of the first color
layer.

8. The method of claim 1, wherein the stacking results in
the shading layer being stacked on top of the highlighting
layer, and the highlighting layer being stacked on top of the
first color layer.

9. A computer program product for customizing a virtual
asset, the computer program product being embodied in a
non-transitory computer readable storage medium and com-
prising computer instructions, comprising:

receiving a virtual asset that includes a first color layer,

wherein the first color layer is set to an initial color
value;
enabling the initial color value of the first color layer to be
changed by a user to a final color value, wherein the
final color value is different than the initial color value;

duplicating the first color layer into a plurality of color
layers that are identical to the first color layer, wherein
the plurality of color layers includes a shading layer
and a highlighting layer and wherein the shading layer
and the highlighting layer are set to the final color
value,

processing the shading layer, wherein the processing

comprises adjusting, without human intervention,
responsive to the duplication, and independent of color
values in the plurality of color layers other than the
shading layer, a hue of a red component of the final
color value to a maximum lightness in the shading
layer;

processing the highlighting layer, wherein the processing

comprises adjusting, without human intervention,
responsive to the duplication, and independent of color
values in the plurality of color layers other than the
highlighting layer, a hue of a red component of the final
color value to a minimum lightness in the highlighting
layer; and

stacking the plurality of layers on top of the first color

layer, wherein the stacking comprises multiplying cor-
responding portions of the shading layer and the first
color layer against each other, thereby customizing the
virtual asset.

10. The computer program product of claim 9, wherein
the virtual asset is received at a client device.

11. The computer program product of claim 9, wherein the
virtual asset is two-dimensional and is rendered to appear
three-dimensional by copying portions of a two-dimensional
model onto a plurality of polygons on a surface of a
three-dimensional model.

US 9,472,161 Bl

13

12. The computer program product of claim 9, wherein
the first color layer is bitmap data marked for coloring by
including shading, highlight, and base color information.

13. The computer program product of claim 9, wherein
the stacking results in the highlight layer being stacked on
top of the shading layer, and the shading layer being stacked
on top of the first color layer.

14. The computer program product of claim 9, wherein
the stacking results in the shading layer being stacked on top
of the highlighting layer, and the highlighting layer being
stacked on top of the first color layer.

15. A system for customizing a virtual asset, comprising:

a memory and a processor, wherein the memory com-

prises one or more programs that are collectively
configured to use the processor to:

receive a virtual asset that includes a first color layer,

wherein the first color layer is set to an initial color
value:
enable the initial color value of the first color layer to be
changed by a user to a final color value, wherein the
final color value is different than the initial color value;

duplicate the first color layer into a plurality of color
layers that are identical to the first color layer, wherein
the plurality of color layers includes a shading layer
and a highlighting layer and wherein the shading layer
and the highlighting layer are set to the final color
value,

process the shading layer by adjusting, without human

intervention, responsive to the duplication, and inde-
pendent of color values in the plurality of color layers
other than the shading layer, a hue of a red component
of the final color value to a maximum lightness in the
shading layer;

process the highlighting layer by adjusting, without

human intervention, responsive to the duplication, and
independent of color values in the plurality of color

10

15

20

25

30

35

14

layers other than the highlighting layer, a hue of a red
component of the final color value to a minimum
lightness in the highlighting layer; and

stacking the plurality of layers on top of the first color

layer, wherein the stacking comprises multiplying cor-
responding portions of the shading layer and the first
color layer against each other, thereby customizing the
virtual asset.

16. The system of claim 15, wherein the final color value
represents a solid color.

17. The system of claim 15, wherein the one or more
programs are further collectively configured to display the
plurality of layers stacked on the first color layer.

18. The system of claim 15, wherein the virtual asset
comprises a SWF file and the first color layer and the
plurality of layers are respective layers within the SWF file.

19. The system of claim 15, wherein the virtual asset is
received at a client device.

20. The system of claim 15, wherein the virtual asset is
two-dimensional and is rendered to appear three-dimen-
sional by copying portions of a two-dimensional model onto
a plurality of polygons on a surface of a three-dimensional
model.

21. The system of claim 15, wherein the first color layer
is bitmap data marked for coloring by including shading,
highlight, and base color information.

22. The system of claim 15, wherein the stacking results
in the highlight layer being stacked on top of the shading
layer, and the shading layer being stacked on top of the first
color layer.

23. The system of claim 15, wherein the stacking results
in the shading layer being stacked on top of the highlighting
layer, and the highlighting layer being stacked on top of the
first color layer.

